Objective: UAV-UGV Docking

- **Objective:** Extend a potential-fields method for docking a small unmanned aerial vehicle (UAV) with an unmanned ground vehicle (UGV) and verify the method through simulation.

Research Considerations:
- Use computer vision to direct the UAV
- Make the behavior tunable to environmental and vehicle characteristics
- Must be computationally inexpensive

Approach: 3D Extension of 2D Docking Work

- UAV-UGV docking has not been demonstrated using vision.
- Minten, Murphy, Hyams, and Micire (2001) demonstrated low-order computational complexity UGV-UGV docking using potential fields with visual fiducials.
- This 2D work should in theory be extensible to 3D.
- Parameterizing the solution allows control over docking behavior.
- **Potential Fields:** Attractive and tangential with three zones
 - Ballistic Region - Proceed within a certain range of the dock
 - Coercive Zone - Transition from the ballistic region to the approach zone
 - Approach Zone - Gently guide the vehicle into contact with the dock
- **Simulation Parameters:** Starting locations, field sizes, field strengths, field tapering, landing pad rotation, approach cone aperture

Challenge: Correct Tangential Vector

- Problem:
 - There are infinitely many tangential vectors to another vector (unit normal vector definition of a plane).
 - How is the correct vector chosen from among these?

- Solution:
 - Use the attractive vector to define one plane (provides an infinite number of tangential vectors).
 - Define the vector of dock orientation as a vector passing through the dock and the pink orientation sphere shown.
 - Use this vector crossed with the attractive vector to define another plane intersecting the original plane.
 - The vector defined by the intersecting planes is the correct tangential vector at that test point.

Testing: SARGE Simulation

- **SARGE Information:**
 - SARGE stands for Search and Rescue Game Environment.
 - SARGE is essentially a video game used for training search and rescue personnel and simulating robot behavior.

- **Uses for SARGE:**
 - It is accurate enough for the training to translate to the physical world.
 - It provides a realistic visual atmosphere to facilitate the viewing of simulations.

- **Implementation of Simulation:**
 - Used Unity game development software
 - Used pre-rendered SARGE models for robots
 - Defined underlying robot behavior using JavaScript

- **Test Cases:**
 - 48 total test runs
 - Divide slider bar location into two categories: right of center or left of center
 - Produces 32 distinct start locations to test
 - Produces 16 potential field parameter variations to test

Contributions and Acknowledgements

- **Contributions:**
 - First vision-based docking algorithm for UAV-UGV docking
 - Solves tangential field problem in extending potential fields from 2D to 3D
 - Will be used for physical trials in the fall

- **Acknowledgements:**
 - Funding was provided by the National Science Foundation REU program and Lockheed Martin Missile and Fire Command.

Sources